Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Environ Manage ; 357: 120597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38552510

RESUMO

Graphitic carbon nitride (g-C3N4) is a promising metal-free photocatalyst; however, its high carrier recombination rate and insufficient redox capacity limit its degradation effect on antibiotics. In order to overcome these shortcomings, the photocatalytic activity is improved by regulating the spin polarization state, constructing the internal electric field, and applying the external piezoelectric field. In this paper, the chlorine-doped and nitrogen-deficient porous carbon nitride composite carbon quantum dots (Nv-Cl/UPCN@CQD) has been synthesized successfully. The doping position of chlorine and spin polarization properties are verified by DFT calculation. The key intermediates *O2- and *OOH for the synthesis of reactive oxygen species were detected by in-situ infrared testing, which promotes the production of •O2- and H2O2. The degradation rate constant of Nv-Cl/UPCN@CQD for removal of tetracycline is 8.45 times higher than that of g-C3N4. The active oxygen production and degradation efficiency of piezoelectric photocatalysis under the synergistic effect of intense stirring and vis-light irradiation are much higher than those of photocatalysis and piezoelectric catalysis, and the conversion of H2O2 to •OH is promoted by piezoelectric field. This paper provides a reliable way to improve the performance of piezoelectric photocatalysts by adjusting their energy band, electronic structure and piezoelectric force.


Assuntos
Cloro , Pontos Quânticos , Peróxido de Hidrogênio , Antibacterianos , Nitrogênio , Pontos Quânticos/química , Catálise
2.
Artigo em Inglês | MEDLINE | ID: mdl-38466605

RESUMO

The nature of heterophilous graphs is significantly different from that of homophilous graphs, which causes difficulties in early graph neural network (GNN) models and suggests aggregations beyond the one-hop neighborhood. In this article, we develop a new way to implement multiscale extraction via constructing Haar-type graph framelets with desired properties of permutation equivariance, efficiency, and sparsity, for deep learning tasks on graphs. We further design a graph framelet neural network model permutation equivariant graph framelet augmented network (PEGFAN) based on our constructed graph framelets. The experiments are conducted on a synthetic dataset and nine benchmark datasets to compare the performance with other state-of-the-art models. The result shows that our model can achieve the best performance on certain datasets of heterophilous graphs (including the majority of heterophilous datasets with relatively larger sizes and denser connections) and competitive performance on the remaining.

3.
J Colloid Interface Sci ; 664: 251-262, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467090

RESUMO

Ruthenium (Ru) nanoparticles dispersed on carbon support are promising electrocatalysts for hydrogen evolution reaction (HER) due to strong electronic metal-carbon interactions (EMCIs). Defects engineering in carbon supports is an effective strategy to adjust EMCIs. We prepared nitrogen/sulfur co-doped carbon supported Ru nanoparticles (Ru@N/S-LC) using sodium lignosulfonate and urea as feedstocks. Intrinsic S dopants from sodium lignosulfonate create rich S defects, thus enhancing the EMCIs within Ru@N/S-LC, leading a faster electron transfer between Ru nanoparticles and N/S-LC compared with N-doped carbon supported Ru nanoparticles (Ru@N-CC). The resulting Ru@N/S-LC exhibits an enhanced work function and a down-shifted d-band center, inducing stronger electron capturing ability and weaker hydrogen desorption energy than Ru@N-CC. Ru@N/S-LC requires only 7 and 94 mV overpotential in acidic medium and alkaline medium to achieve a current density of 10 mA cm-2. Density Functional Theory (DFT) calculations were utilized to clarify the impact of sulfur (S) doping and the mechanism underlying the notable catalytic activity of Ru@N/S-LC. This study offers a perspective for utilizing the natural dopants of biomass to adjust the EMCIs for electrocatalysts.

4.
Aging Cell ; : e14121, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450924

RESUMO

Although studies have demonstrated that genome instability is accumulated in patients with Alzheimer's disease (AD), the specific types of genome instability linked to AD pathogenesis remain poorly understood. Here, we report the first characterization of the age- and sex-related trajectories of telomere length (TL) and micronuclei in APP/PS1 mice model and wild-type (WT) controls (C57BL/6). TL was measured in brain (prefrontal cortex, cerebellum, pituitary gland, and hippocampus), colon and skin, and MN was measured in bone marrow in 6- to 14-month-old mice. Variation in TL was attributable to tissue type, age, genotype and, to a lesser extent, sex. Compared to WT, APP/PS1 had a significantly shorter baseline TL across all examined tissues. TL was inversely associated with age in both genotypes and TL shortening was accelerated in brain of APP/PS1. Age-related increase of micronuclei was observed in both genotypes but was accelerated in APP/PS1. We integrated TL and micronuclei data with data on cognition performance and brain amyloidosis. TL and micronuclei were linearly correlated with cognition performance or Aß40 and Aß42 levels in both genotypes but to a greater extent in APP/PS1. These associations in APP/PS1 mice were dominantly driven by females. Together, our findings provide foundational knowledge to infer the TL and micronuclei trajectories in APP/PS1 mice during disease progression, and strongly support that TL attrition and micronucleation are tightly associated with AD pathogenesis in a female-biased manner.

5.
J Food Sci ; 89(1): 259-275, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983838

RESUMO

This study explores the multifaceted attributes of black soldier fly larvae protein (BSFLP), focusing on its physicochemical, functional, and antioxidant properties. BSFLP is characterized by 16 amino acids, with a predominant random coil secondary structure revealed by circular dichroism spectra. Differential scanning calorimetry indicates a substantial thermal denaturation temperature of 97.63°C. The protein exhibits commendable solubility, emulsification, and foaming properties in alkaline and low-salt environments, albeit with reduced water-holding capacity and foam stability under elevated alkaline and high-temperature conditions. In vitro assessments demonstrate that BSFLP displays robust scavenging proficiency against 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid), and hydroxyl radicals, with calculated EC50 values of 1.90 ± 0.57, 0.55 ± 0.01, and 1.14 ± 0.02 mg/mL, respectively, along with notable reducing capabilities. Results from in vivo antioxidant experiments reveal that BSFLP, administered at doses of 300 and 500 mg/kg, significantly enhances the activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) (p < 0.05) while simultaneously reducing malondialdehyde levels in both serum and tissues of d-galactose-induced oxidative stress in mice. Moreover, the protein effectively attenuates oxidative damage in liver and hippocampal tissues. These findings underscore the potential utility of BSFLP as a natural antioxidant source, with applications spanning the food, pharmaceutical, and cosmetic industries. PRACTICAL APPLICATION: Black soldier fly larvae protein emerges as an environmentally sustainable reservoir of natural antioxidants, holding significant promise for the food, pharmaceutical, and cosmetic sectors. Its advantageous amino acid composition, robust thermal resilience, and impressive functional attributes position it as a compelling subject for continued investigation and advancement in various applications.


Assuntos
Antioxidantes , Dípteros , Animais , Camundongos , Antioxidantes/química , Larva , Dípteros/metabolismo , Estresse Oxidativo , Extratos Vegetais/química
6.
Chin Med J (Engl) ; 136(22): 2706-2711, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37882066

RESUMO

BACKGROUND: Distinguishing between primary clear cell carcinoma of the liver (PCCCL) and common hepatocellular carcinoma (CHCC) through traditional inspection methods before the operation is difficult. This study aimed to establish a Faster region-based convolutional neural network (RCNN) model for the accurate differential diagnosis of PCCCL and CHCC. METHODS: In this study, we collected the data of 62 patients with PCCCL and 1079 patients with CHCC in Beijing YouAn Hospital from June 2012 to May 2020. A total of 109 patients with CHCC and 42 patients with PCCCL were randomly divided into the training validation set and the test set in a ratio of 4:1.The Faster RCNN was used for deep learning of patients' data in the training validation set, and established a convolutional neural network model to distinguish PCCCL and CHCC. The accuracy, average precision, and the recall of the model for diagnosing PCCCL and CHCC were used to evaluate the detection performance of the Faster RCNN algorithm. RESULTS: A total of 4392 images of 121 patients (1032 images of 33 patients with PCCCL and 3360 images of 88 patients with CHCC) were uesd in test set for deep learning and establishing the model, and 1072 images of 30 patients (320 images of nine patients with PCCCL and 752 images of 21 patients with CHCC) were used to test the model. The accuracy of the model for accurately diagnosing PCCCL and CHCC was 0.962 (95% confidence interval [CI]: 0.931-0.992). The average precision of the model for diagnosing PCCCL was 0.908 (95% CI: 0.823-0.993) and that for diagnosing CHCC was 0.907 (95% CI: 0.823-0.993). The recall of the model for diagnosing PCCCL was 0.951 (95% CI: 0.916-0.985) and that for diagnosing CHCC was 0.960 (95% CI: 0.854-0.962). The time to make a diagnosis using the model took an average of 4 s for each patient. CONCLUSION: The Faster RCNN model can accurately distinguish PCCCL and CHCC. This model could be important for clinicians to make appropriate treatment plans for patients with PCCCL or CHCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Carcinoma Hepatocelular/patologia , Redes Neurais de Computação
7.
Am J Transl Res ; 15(9): 5730-5746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37854219

RESUMO

OBJECTIVE: Acute kidney injury (AKI) is a global problem due to its high morbidity and mortality. The aim of this study was to identify the key RNAs involved in the ischemia/reperfusion (I/R) or cisplatin (CIS) induced AKI. METHODS: Gene Expression Omnibus database was used to download the microarray dataset GSE106993, GSE130814 and GSE98622. Differentially expressed lncRNAs (DE-lncRNAs) and DE-mRNAs were identified in I/R and CIS induced AKI. The target miRNAs of DE lncRNAs were predicted from miRDB, and the miRNA of lncRNA target mRNAs were predicted form StarBase dataset. The ceRNA regulatory networks, GO and KEGG enrichment analysis, and protein-protein interaction (PPI) of I/R and CIS induced AKI specific genes were constructed. The CIBESORT was applied to infer the proportion of 22 immune infiltration cells based on gene expression profiles of I/R and CIS induced AKI. RESULTS: Totally, 2 DE-lncRNAs and 375 DE-mRNAs were identified in I/R and CIS induced AKI. The common ceRNA network was constructed between CIS group and I/R induced AKI group, which contained 2 lncRNAs (Platr7 and Gm15611), 65 mmu-miRNAs and 167 mRNAs. The 167 common mRNAs were enriched in the biological process of transcription regulation, metabolic process, cell proliferation, the cellular component (CC) of extracellular region and space, the molecular function of DNA binding, and transcription regulator activity in CIS and IRI induced AKI. The common 167 mRNAs involved in the MAPK signaling pathway and JAK-STAT signaling pathway were identified. Protein-Protein Interaction (PPI) Network of ceRNAs network expressed gene was constructed, including 81 nodes, which contained 3 upregulated genes and 78 downregulated genes. Among them, mitochondrial apoptosis-related genes Pmaip1 and Nptx1 showed significantly high expression in the GSE98622 and GSE106993 data sets. The investigation to the connection between the gene expression profiles and immune cell infiltration showed considerable differences in immune cell percentage between AKI group and normal group. CONCLUSION: Novel lncRNAs and mRNAs were identified, which may serve as potential biomarkers to predict the diagnostic and therapeutic targets for AKI patients based on a large-scale sample. More importantly, the ceRNA network of I/R or CIS induced AKI was constructed, which provides valuable information to further explore the molecular mechanism underlying onset and progression of AKI.

8.
Front Oncol ; 13: 1152622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727213

RESUMO

This study summarizes the latest achievements, challenges, and future research directions in deep learning technologies for the diagnosis of renal cell carcinoma (RCC). This is the first review of deep learning in RCC applications. This review aims to show that deep learning technologies hold great promise in the field of RCC diagnosis, and we look forward to more research results to meet us for the mutual benefit of renal cell carcinoma patients. Medical imaging plays an important role in the early detection of renal cell carcinoma (RCC), as well as in the monitoring and evaluation of RCC during treatment. The most commonly used technologies such as contrast enhanced computed tomography (CECT), ultrasound and magnetic resonance imaging (MRI) are now digitalized, allowing deep learning to be applied to them. Deep learning is one of the fastest growing fields in the direction of medical imaging, with rapidly emerging applications that have changed the traditional medical treatment paradigm. With the help of deep learning-based medical imaging tools, clinicians can diagnose and evaluate renal tumors more accurately and quickly. This paper describes the application of deep learning-based imaging techniques in RCC assessment and provides a comprehensive review.

9.
Nanoscale ; 15(38): 15717-15729, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37728399

RESUMO

The accumulation of amyloid-ß (Aß) into senile plaques and the resulting continuous oxidative stress are major pathogenic mechanisms in Alzheimer's disease (AD). In this study, we designed a lipoprotein-inspired nanoparticle to facilitate Aß clearance and alleviate oxidative stress for the treatment of AD. Lipoprotein-like nanocomposites (RLA-rHDL@ANG) were fabricated by assembling reconstituted high density lipoprotein (rHDL) with an apoE-derived peptide (RLA) with Aß binding and clearance capabilities, and were subsequently camouflaged using reactive oxygen species (ROS)-sensitive DSPE-TK-mPEG2000 and DSPE-TK-PEG3400-ANG with brain penetration as well as ROS scavenging ability. Immunoelectron microscopy, fluorescence colocalization, and enzyme linked immunosorbent assay, together with a thioflavin-T (ThT) fluorescence quantitative test, showed that RLA-rHDL@ANG possessed the ability of high binding affinity to both Aß monomers and oligomers, and disintegration of pre-formed Aß aggregates. ROS level monitoring and transmission electron microscopy (TEM) showed that RLA-rHDL@ANG possessed ROS sensitivity and consumption properties. Transcellular assay and in vivo imaging showed that RLA-rHDL@ANG effectively facilitated blood-brain barrier (BBB) penetration and intracerebral accumulation. It promoted the efficient degradation of Aß by microglia and neurons through lysosomal transport and elimination approaches. Four-week administration of RLA-rHDL@ANG effectively reduced Aß deposition, decreased the ROS level and improved cognitive functions in AD mice. These findings indicate that multifunctional RLA-rHDL@ANG may serve as a promising and feasible candidate for managing the progression of AD.

10.
World J Clin Cases ; 11(14): 3167-3175, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37274032

RESUMO

BACKGROUND: The incidence of lumbar tuberculosis is high worldwide, and effective treatment is a continuing problem. AIM: To study the safety and efficacy of the multitrack and multianchor point screw technique combined with the contralateral Wiltse approach for lesion debridement to treat lumbar tuberculosis. METHODS: The C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), visual analogue scale (VAS) score, oswestry disability index (ODI) and American Spinal Injury Association (ASIA) grade were recorded and analysed pre- and postoperatively. RESULTS: The CRP level and ESR returned to normal, and the VAS score and ODI were decreased at 3 mo postoperatively, with significant differences compared with the preoperative values (P < 0.01). Neurological dysfunction was relieved, and the ASIA grade increased, with no adverse events. CONCLUSION: The multitrack, multianchor point screw fixation technique combined with the contralateral Wiltse approach for debridement is an effective and safe method for the treatment of lumbar tuberculosis.

11.
Ann Clin Lab Sci ; 53(2): 192-199, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37094847

RESUMO

OBJECTIVE: The dysfunction of mesangial cells is a key contributor to the pathogenesis of diabetic nephropathy, while the underlying molecular basis is not fully elucidated. METHODS: Mouse mesangial cells were administered with high glucose medium and the expression of polo-like kinase 2 (PLK2) was determined by PCR and western blot. Loss-of- and gain-of-function of PLK2 was achieved by small interfering RNA targeting PLK2 or PLK2 overexpression plasmid transfections. The hypertrophy, extracellular matrix production, and oxidative stress of mesangial cells were detected. The activation of p38-MAPK signaling was tested using western blot. SB203580 was employed to block the p38-MAPK signaling. The expression of PLK2 in human renal biopsies was detected by immunohistochemistry. RESULTS: High glucose administration upregulated the expression of PLK2 in mesangial cells. PLK2 knockdown reversed the hypertrophy, extracellular matrix production, and oxidative stress induced by high glucose in mesangial cells. PLK2 knockdown suppressed the activation of p38-MAPK signaling. Blockade of p38-MAPK signaling by SB203580 abolished the dysfunction of mesangial cells induced by high glucose and PLK2 overexpression. The enhanced expression of PLK2 was validated in human renal biopsies. CONCLUSION: PLK2 is a key participant in high glucose-induced mesangial cell dysfunction, and might play a crucial role in the pathogenesis of diabetic nephropathy.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Células Mesangiais/metabolismo , Células Mesangiais/patologia , Transdução de Sinais , Glucose/metabolismo , Estresse Oxidativo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Hipertrofia/metabolismo , Hipertrofia/patologia
12.
Sensors (Basel) ; 23(8)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37112388

RESUMO

Addressing the problem that control methods of wheel-legged robots for future Mars exploration missions are too complex, a time-efficient control method based on velocity planning for a hexapod wheel-legged robot is proposed in this paper, which is named time-efficient control based on velocity planning (TeCVP). When the foot end or wheel at knee comes into contact with the ground, the desired velocity of the foot end or knee is transformed according to the velocity transformation of the rigid body from the desired velocity of the torso which is obtained by the deviation of torso position and posture. Furthermore, the torques of joints can be obtained by impedance control. When suspended, the leg is regarded as a system consisting of a virtual spring and a virtual damper to realize control of legs in the swing phase. In addition, leg sequences of switching motion between wheeled configuration and legged configuration are planned. According to a complexity analysis, velocity planning control has lower time complexity and less times of multiplication and addition compared with virtual model control. In addition, simulations show that velocity planning control can realize stable periodic gait motion, wheel-leg switching motion and wheeled motion and the operation time of velocity planning control is about 33.89% less than that of virtual model control, which promises a great prospect for velocity planning control in future planetary exploration missions.

13.
Molecules ; 28(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36770732

RESUMO

Insulating oil plays a crucial role in internal insulation of oil-impregnated transformers. It has been demonstrated in a variety of experimental studies that mineral oil (MO) and vegetable oil (VO) can be blended in different ratios to improve insulation properties; however, the mechanisms underlying this phenomenon remain unclear. In this study, a molecular dynamics (MD) simulation approach was used to investigate diffusion of water molecules in VO/MO blends and dielectric constants of a mixture. The results show that the diffusion coefficient of water molecules is negatively correlated with the proportion of VO; thus, addition of VO helps to improve the insulation properties of a mixture. Due to introduction of strong polar functional groups, a decrease in the diffusion behavior of water molecules can be attributed to an increase in the interaction energy and formation of hydrogen bonds between water molecules and the mixed oil system. There is a direct correlation between the dielectric constant of a mixture and VO content; however, it is very sensitive to water content. The presence of strong polar water molecules or functional groups in a mixture leads to an increase in the dielectric constant, which results in a reduction in insulating properties. Accordingly, presence of polar groups plays an important role in determining the insulating properties of a mixture. To increase the insulation performance of a mixture, it is important to consider the diffusion-inhibiting and dielectric effects of the stronger polar groups in vegetable oil compared to those in mineral oil.

14.
Front Pediatr ; 11: 1060053, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36846163

RESUMO

Backgrounds & aims: Epstein-Barr virus (EBV) infection occurs commonly in children and may cause acute infectious mononucleosis (AIM) and various malignant diseases. Host immune responses are key players in the resistance to EBV infection. We here assessed the immunological events and laboratory indicators of EBV infection, as well as determined the clinical usefulness of evaluating the severity and efficacy of antiviral therapy in AIM patients. Methods: We enrolled 88 children with EBV infection. The immune environment was defined by immunological events such as frequencies of lymphocyte subsets, phenotypes of T cells, and their ability to secrete cytokines, and so on. This environment was analyzed in EBV-infected children with different viral loads and in children in different phases of infectious mononucleosis (IM) from disease onset to convalescence. Results: Children with AIM had higher frequencies of CD3+ T and CD8+ T cells, but lower frequencies of CD4+ T cells and CD19+ B cells. In these children, the expression of CD62L was lower and that of CTLA-4 and PD-1 was higher on T cells. EBV exposure induced granzyme B expression, but reduced IFN-γ secretion, by CD8+ T cells, whereas NK cells exhibited reduced granzyme B expression and increased IFN-γ secretion. The frequency of CD8+ T cells was positively correlated with the EBV DNA load, whereas the frequencies of CD4+ T cells and B cells were negatively correlated. During the convalescent phase of IM, CD8+ T cell frequency and CD62L expression on T cells were restored. Moreover, patient serum levels of IL-4, IL-6, IL-10, and IFN-γ were considerably lower throughout the convalescent phase than throughout the acute phase. Conclusion: Robust expansion of CD8+ T cells, accompanied by CD62L downregulation, PD-1 and CTLA-4 upregulation on T cells, enhanced granzyme B production, and impaired IFN-γ secretion, is a typical characteristic of immunological events in children with AIM. Noncytolytic and cytolytic effector functions of CD8+ T cells are regulated in an oscillatory manner. Furthermore, the AST level, number of CD8+ T cells, and CD62L expression on T cells may act as markers related to IM severity and the effectiveness of antiviral treatment.

15.
Neural Netw ; 156: 135-151, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257070

RESUMO

To develop an efficient brain-computer interface (BCI) system, electroencephalography (EEG) measures neuronal activities in different brain regions through electrodes. Many EEG-based motor imagery (MI) studies do not make full use of brain network topology. In this paper, a deep learning framework based on a modified graph convolution neural network (M-GCN) is proposed, in which temporal-frequency processing is performed on the data through modified S-transform (MST) to improve the decoding performance of original EEG signals in different types of MI recognition. MST can be matched with the spatial position relationship of the electrodes. This method fusions multiple features in the temporal-frequency-spatial domain to further improve the recognition performance. By detecting the brain function characteristics of each specific rhythm, EEG generated by imaginary movement can be effectively analyzed to obtain the subjects' intention. Finally, the EEG signals of patients with spinal cord injury (SCI) are used to establish a correlation matrix containing EEG channel information, the M-GCN is employed to decode relation features. The proposed M-GCN framework has better performance than other existing methods. The accuracy of classifying and identifying MI tasks through the M-GCN method can reach 87.456%. After 10-fold cross-validation, the average accuracy rate is 87.442%, which verifies the reliability and stability of the proposed algorithm. Furthermore, the method provides effective rehabilitation training for patients with SCI to partially restore motor function.


Assuntos
Interfaces Cérebro-Computador , Traumatismos da Medula Espinal , Humanos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Movimento/fisiologia , Algoritmos , Traumatismos da Medula Espinal/diagnóstico , Imaginação/fisiologia
16.
Front Plant Sci ; 13: 988505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061810

RESUMO

The HD-Zip transcription factors play a crucial role in plant development, secondary metabolism, and abiotic stress responses, but little is known about HD-Zip I genes in soybean. Here, a homeodomain-leucine zipper gene designated GmHdz4 was isolated. Chimeric soybean plants, GmHdz4 overexpressing (GmHdz4-oe), and gene-editing via CRISPR/Cas9 (gmhdz4) in hairy roots, were generated to examine the GmHdz4 gene response to polyethylene glycol (PEG)-simulated drought stress. Bioinformatic analysis showed GmHdz4 belonged to clade δ, and was closely related to other drought tolerance-related HD-Zip I family genes such as AtHB12, Oshox12, and Gshdz4. The GmHdz4 was located in the plant nucleus and showed transcriptional activation activity by yeast hybrid assay. Quantitative real-time PCR analysis revealed that GmHdz4 expression varied in tissues and was induced by PEG-simulated drought stress. The gmhdz4 showed promoted growth of aboveground parts, and its root system architecture, including the total root length, the root superficial area, and the number of root tips were significantly higher than those of GmHdz4-oe even the non-transgenic line (NT) on root tips number. The better maintenance of turgor pressure by osmolyte accumulation, and the higher activity of antioxidant enzymes to scavenge reactive oxygen species, ultimately suppressed the accumulation of hydrogen peroxide (H2O2), superoxide anion (O2-), and malondialdehyde (MDA), conferring higher drought tolerance in gmhdz4 compared with both GmHdz4-oe and NT. Together, our results provide new insights for future research on the mechanisms by which GmHdz4 gene-editing via CRISPR/Cas9 system could promote drought stress and provide a potential target for molecular breeding in soybean.

17.
Comput Math Methods Med ; 2022: 2550875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35872928

RESUMO

Objective: To explore the effect of acupotomy in combination with electroacupuncture therapy on the finger mobility and pain relief in patients who had carpal tunnel syndrome (CTS). Methods: The clinical data of 60 CTS patients in our hospital from November 2020 to November 2021 received retrospective analysis. With 30 cases in each group, they were randomly divided into the treatment group and the control group. The control group underwent hot compress, oral medication, and local injection during hospitalization, while the treatment group received acupotomy and electroacupuncture therapy on top of the above treatments, and the clinical effects, finger mobility, and pain relief were compared between both groups. Results: The clinical indexes in the treatment group after treatment were remarkably better than those in the control group (P < 0.05), with the remarkably higher number of cured cases in the treatment group (P < 0.05). After treatment, the treatment group had remarkably higher mean total active motion (TAM) and score of the 36-item short form (SF-36) health survey and a remarkably lower mean score of visual analog scale (VAS) than those in the control group (P < 0.001). Conclusion: The quality of life and finger mobility of CTS sufferers can be improved with acupotomy in conjunction with electroacupuncture therapy. In-depth research will help build better procedures for these patients because this approach lessens the discomfort and shortens the symptom duration in CTS sufferers.


Assuntos
Terapia por Acupuntura , Síndrome do Túnel Carpal , Eletroacupuntura , Terapia por Acupuntura/métodos , Síndrome do Túnel Carpal/terapia , Eletroacupuntura/métodos , Humanos , Dor , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento
18.
Clin Exp Nephrol ; 26(10): 943-954, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35678923

RESUMO

BACKGROUND: Circular RNA (circRNA) is widely shown to be associated with the development of diabetic nephropathy (DN). Our study aimed to further explore the role of circ_0000064 and provide a new mechanism for its action in DN. METHODS: Cell models of DN in vitro were constructed by treating human renal mesangial cells (HRMCs) with high glucose (HG). The expression of circ_0000064, microRNA-424-5p (miR-424-5p) and Wnt family member 2B (WNT2B) mRNA was detected by quantitative real-time PCR (qPCR). Cell proliferation was assessed by CCK-8 assay and EdU assay. Cell cycle was characterized by DNA content using flow cytometry. The releases of pro-inflammatory factors were checked using commercial ELISA kits. The expression of cell cycle- and fibrosis-associated proteins was detected by western blot. The interplays between miR-424-5p and circ_0000064 or WNT2B were verified by dual-luciferase reporter assay and RIP assay. RESULTS: Circ_0000064 and WNT2B were upregulated, while miR-424-5p was downregulated in HG-treated HRMCs. Circ_0000064 knockdown largely attenuated HG-induced proliferation, inflammatory responses and extracellular matrix (ECM) accumulation in HRMCs, and miR-424-5p deficiency reversed the role of circ_0000064 knockdown. MiR-424-5p was a target of circ_0000064, and miR-424-5p directly bound to WNT2B. MiR-424-5p restoration alleviated HG-induced proliferation, inflammatory responses and ECM accumulation in HRMCs, and WNT2B overexpression partially abolished the effects of miR-424-5p. CONCLUSION: Circ_0000064 knockdown ameliorated HG-induced HRMC dysfunctions through miR-424-5p enrichment-mediated WNT2B inhibition, hinting that circ_0000064 contributed to DN development.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , MicroRNAs , RNA Circular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , DNA , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Matriz Extracelular/metabolismo , Glucose/toxicidade , Glicoproteínas , Humanos , Inflamação/genética , Inflamação/prevenção & controle , Células Mesangiais/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Mensageiro , Proteínas Wnt
19.
Front Aging Neurosci ; 14: 911513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35686023

RESUMO

Hemiplegia is a common motor dysfunction caused by a stroke. However, the dynamic network mechanism of brain processing information in post-stroke hemiplegic patients has not been revealed when performing motor imagery (MI) tasks. We acquire electroencephalography (EEG) data from healthy subjects and post-stroke hemiplegic patients and use the Fugl-Meyer assessment (FMA) to assess the degree of motor function damage in stroke patients. Time-varying MI networks are constructed using the adaptive directed transfer function (ADTF) method to explore the dynamic network mechanism of MI in post-stroke hemiplegic patients. Finally, correlation analysis has been conducted to study potential relationships between global efficiency and FMA scores. The performance of our proposed method has shown that the brain network pattern of stroke patients does not significantly change from laterality to bilateral symmetry when performing MI recognition. The main change is that the contralateral motor areas of the brain damage and the effective connection between the frontal lobe and the non-motor areas are enhanced, to compensate for motor dysfunction in stroke patients. We also find that there is a correlation between FMA scores and global efficiency. These findings help us better understand the dynamic brain network of patients with post-stroke when processing MI information. The network properties may provide a reliable biomarker for the objective evaluation of the functional rehabilitation diagnosis of stroke patients.

20.
Int J Mol Sci ; 23(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743297

RESUMO

Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) causes an estimated economic loss of about USD 3 billion each year in soybean (Glycine max L.) production worldwide. Overexpression of resistance genes against SCN provides a powerful approach to develop SCN resistance cultivars in soybean. The clarification of molecular characterization in transformation events is a prerequisite for ecological risk assessment, food safety, and commercial release of genetically modified crops. Here, we generated transgenic events harboring the BCN (beet cyst nematode) resistance Hs1pro-1 gene using the Agrobacterium-mediated method in soybean, evaluated their resistance to SCN infection, and clarified the molecular characterization of one of the transformation events. Five independent and stable inheritable transformation events were generated by an Agrobacterium-mediated transformation method. SCN resistance tests showed the average number of developed females per plant and female index (FI) in T4 ZHs1-1, ZHs1-2, ZHs1-3, ZHs1-4, and ZHs1-5 transformation events were significantly lower than that in the nontransgenic control. Among these, the ZHs1-2 transformation event had the lowest number of developed females per plant and FI. Southern hybridization showed the exogenous target Hs1pro-1 gene was inserted in one copy and the Bar gene was inserted two copies in the ZHs1-2 transformation event. The exogenous T-DNA fragment was integrated in the reverse position of Chr02: 5351566-5231578 (mainly the Bar gene expression cassette) and in the forward position of Chr03: 17083358-17083400 (intact T-DNA, including Hs1pro-1 and Bar gene expression cassette) using a whole genome sequencing method (WGS). The results of WGS method and Southern hybridization were consistent. All the functional elements of exogenous T-DNA fragments were verified by PCR using specific primer pairs in the T5 and T6 ZHs1-2 transformation events. These results demonstrated that the overexpression of Hs1pro-1 gene enhanced SCN resistance, and provide an important reference for the biosafety assessment and the labeling detection in transformation event ZHs1-2.


Assuntos
Cistos , Tylenchoidea , Animais , Produtos Agrícolas/genética , DNA Bacteriano , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , /metabolismo , Tylenchoidea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...